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J The problem of a semi-infinite mode III crack that

suddenly begins to propagate at a constant speed is

considered for a general linear viscoelastic body. A simple

closed form expression for the Laplace transform of the

energy release rate (ERR) is derived under the assumption

that a Barenbatt type failure zone exists at the crack tip.

The first two terms of a short time asymptotic series for

the ERR is constructed and the rate at which the ERR

converges to steady-state Is studied. It is shown that the

rate of convergence to steady-state is dependent upon crack

I speed and material properties. Moreover, it is found that

whether or not a failure zone is incorporated into the model

I significantly influences both quantitatively and

qualitatively the short and long time behavior of the ERR.

This difference is Important to predictions of stable vs

unstable crack speeds based upon a critical ERR fracture

criterion.
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1. Introduction.

Several analytical studies of dynamically propagating

cracks in linear visoelastic material have appeared in the

literature since Willis(1967) presented an analysis of the

dynamic, steady-state propagation of a semi-infinite, mode

III (anti-plane shear) crack in an infinite viscoelastic

body. Employing transform methods and the Wiener-Hopf

technique, Willis constructed the dynamic stress intensity

factor (SIF) for a special class of crack face loadings and

for a standard linear solid material model. Subsequently,

Atkinson and List(1972) introduced transient effects into

the problem by assuming that the crack, initially at rest,

begins to propagate at a constant speed under the action of

suddenly applied loads on the crack faces. Also utilizing

the Wiener-Hopf method, they derived an expression for the

Laplace transform of the time dependent SIF from which long

and short time asymptotic approximations and numerical

Laplace inversion calculations were obtained. However,

their analysis was limited to consideration of constant

applied load along the crack faces and the required

Wiener-Hopf factorization was effected only for a Maxwell

material model and the Achenbach-Chao(1962) three parameter

approximation to the standard linear solid.

Somewhat later, Atkinson and Coleman(1977) used a
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matched asymptotic expansion technique to develop an

approximate analysis of the steady-state propagation of a

semi-infinite mode I (plane strain or plane stress) crack

propagating in a clamped viscoelastic strip. Shortly

thereafter, Atkinson(1979) presented an approximate analysis

of the mode I counterpart to the mode III problem considered

by Atkinson and List(1972). Their argument, ostensibly

valid for fairly general material models, involved slightly

modifying the exact elastic result of Baker(1962) in order

to approximate the Laplace transform of the actual dynamic

viscoelastic SIF. The dominant term for each of the short

and long time asymptotic expansions of this approximate SIF

was derived for each of three different applied crack face

loads: a constant, a delta function point force and an

exponentially decreasing form. Also in that paper, Atkinson

reconsidered the mode III problem and extended the Atkinson

and List analysis to handle the above three types of crack

face loadings. However, consideration was limited again to

the Achenbach-Chao material model. Atkinson also

constructed an expression for the energy release rate (ERR)

based upon a local (i.e. at the crack tip) work argument and

the singular stress field.

Also in that same year, Atkinson and Popelar(1979)

presented an analysis of the transient constant crack speed

mode III problem for a viscoelastic strip. Constitutive
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relations in terms of differential operators were assumed

and the external load consisted either of constant

displacement of the upper and lower layer boundries or

constant tractions on them. The crack faces were assumed to

be stress free. Again the Wiener-Hopf method was used to

construct an exact expression for the Laplace transform of

the SIF. The required Wiener-Hopf factorization was carried

out modulo a term involving a Cauchy type integral.

Atkinson and Popelar then restricted attention to

numerically approximating the Cauchy integral for the

steady-state limit case and assumed a standard linear solid

material model.

A year later, Atkinson and Popelar(1980) addressed the

more difficult mode I problem for a viscoelastic strip.

Again by use of the Wiener-Hopf method, a formal expression

for the Laplace transform of the SIF was constructed

containing a complicated Cauchy integral. As with the

corresponding mode III case, the integral was studied

numerically in the limiting special case of steady-state

crack propagation in a standard linear solid.

Somewhat later, Walton(1982) examined further the

steady-state mode III problem considered by Willis(1967).

Utilizing the Riemann-Hilbert rather than the Wiener-Hopf

methodology, he constructed a simple closed form expression

for the SIF valid for general crack face loadings and very
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general material models. More specifically, constitutive

equations expressed in terms of convolution integrals rather

than differential operators were adopted and the results

were shown to be valid irrespective of any assumed time rate

of decay of the viscoelastic shear modulus. In contrast,

constitutive relations in terms of constant coefficient

differential operators, necessarily force an exponentially

decaying modulus thereby preventing consideration of the

important class of power-law models which more effectively

represent the mechanical response of many real viscoelastic

materials, such as rubber, than do exponentially decaying

functions.

Subsequently, Walton(1983) extended the above analysis

to determine the angular dependence of the stress field In a

neighborhood of the crack tip. In particular, it was shown

that the asymptotic stress field at the crack tip has the

same angular dependence as the corresponding dynamic elastic

problem. Only the SIF differs between the elastic and

viscoelastic fields.

Walton(1985) next considered the steady-state mode III

problem for a viscoelastic strip. Again utilizing the

Riemann-Hilbert method, a closed form expression for the SIF

was constructed for general loadings and shear modulus. The

form of the solution exhibits clearly the combined effects

of material properties, crack speed and layer thickness upon

AL m m m mIm m mmm
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the SIF.

More recently, Walton(1987a) reconsidered steady-state

mode III crack propagation In an infinite viscoelastic body

in order to investigate the Implications of including a

failure zone model of Barenblatt(1962) type into the

determination of the ERR from a global energy balance

calculation. A simple closed form expression for the ERR,

which in this case is just the work done by the tractions in

the failure zone, was derived under the same mild conditions

on the shear modulus assumed In Walton(1982) and for a

fairly broad class of crack face and failure zone loadings.

It was then observed that whether or not a failure zone is

incorporated into the model greatly influences both

qualitatively and quantitatively the dependence of the ERR

upon crack speed and material properties. In particular,

calculations based upon a failure zone seem to reflect more

closely experimental observations of cracks rapidly

propagating in real viscoelastic material.
1

The methods of Walton(1987a) can be applied to the

calculation of the ERR for a wide variety of dynamic

viscoelastic crack problems. Schovanec and Walton(1987c)

recently completed the analysis of the dynamic steady-state

propagation of two parallel mode III cracks in an infinite

1 Private communication with Prof. W.G. Knauss and Prof. K.

Kuo.
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viscoelastic body. Also, Walton(1987b) has recently

completed a study of the mode I analog of Walton(1987a). In

both of these investigations a Barenblatt failure zone model

was adopted. Of related Interest are two additional papers

by Schovanec and Walton(1987a,1987b) in which these same

methods were applied to quasi-static mode I crack

propagation in non-homogeneous viscoelastic material. It

should also be noted that Knauss(1973) and Schapery(1975)

applied the Barenblatt model to quasi-static viscoelastic

crack growth in viscoelastic material and observed that

whether or not a failure zone is incorporated into the model

greatly affects the behavior of the ERR.

The present paper applies the above Barenblatt failure

zone/Riemann-Hilbert program to the transient mode III

problem considered by Atkinson and List(1972). In

particular a simple closed form expression for the Laplace

transform of the ERR is derived for a very general class of

material models. Only crack face loadings of a simple

exponentially decaying type are considered but the extension

to more general loadings, described in Walton(1987a), offers

no difficulty in the present context and is omitted for the

sake of brevity. Moreover, the loadings assumed here

contain all of the essential ingredients of the Barenblatt

model and as such are amply suited to Illustrating the

qualitative features expected from more general mathematical

A --.
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models.

From the Laplace transform of the ERR both long time

and short time asymptotic analyses are considered. In

particular, the first two terms of a short time asymptotic

series is derived and the question of the convergence rate

to the steady-state solution Is addressed. It is shown that

the rate of convergence to the steady-state solution is

greatly dependent upon crack speed and material properties.

Moreover, whether or not a failure zone is assumed to exist

greatly influences both the short time and long time

behavior of the ERR as well as predictions of stable vs

unstable crack speeds based upon a critical ERR fracture

criterion.
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2. Problem Formulation and Stress Analysis.

The problem to be considered is that of a semi-infinite

mode III crack that begins to propagate at a constant speed

v in an infinite viscoelastic body due to the sudden

application of crack face tractions that then travel with

the crack. The governing field equations for the motion of

a linear viscoelastic solid are

PiiI='iij, j=(u i.i+uji)/2, a ij=2p*d 8j+8ijA*d- kk' (2.1)

where yij, F j, and ui denote the stress, strain, and

displacement fields respectively. In (2.1), p*de denotes

t
the Riemann-Stieltjes convolution .*de= ) )

Since the deformation is assumed to be antiplane

strain, u,=O, u,=O, and the only equation of motion not

identically satisfied is p*ddu,=pu,.

A semi-infinite crack lying along the negative x,-axis

is assumed to begin to propagate at time t=O with a constant

speed v driven by loads G2,(x,,0,t)=f(x,-vt) which follow

it. The corresponding initial-boundary value problem is

Pu,=p*ddu,=4 lP(O)u,(x1x,,t)+J u0,x,,x 2 ,r) pl'(t-r) dr (2.2)

with initial conditions u,=O, u,=O at t=O (2.3)

and boundary conditions o2,(x 1,,Ot)-f(x 1-vt) x,<vt (2.4)

u,(x 1 ,Ot)=O x,>vt

0,,(x,,x,,t)-O as x, 2 +x 2 2.



From (2.1) it can be seen that

aaa(x'Y't)=4a (M*du,,)

Ia PJOU
3 (X1 ,X2 t) (X1 X2 ,T UT' .d (2.5)

It is convenient to change from the fixed coordinates

(x, 1X2,t) to the moving coordinate system (x,y,t) given by

x=x,-vt, Y=x2 and to define w(x,y,t) by

W(x'ylt)=W(x1 -VtIx2,t)=u,(x1 9 x2,t). In the moving

coordinates, equation (2.2) becomes

fP yt)Jeia (x,y,t) d(Wx, t qato W(2.6) resurltr in

[(~P)+ 'd2 [p(O)W(PeY~t)+fo w(p~t-yeipl(t-~r) cir (2.7)

Susqunpplication of the Lapace transformndb

f(P,y,s)= efg(,y,) dT, to (2.7)tield the6 requatsin

gIiv by (sP s)=(O+ e5  .

Sequeapiation (2.8)hcanabearewrittenoas
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a2 7_ [p2+ p 2
L2(w -  pS+ivpsivp) ]=O which has the solution

w(p,ys)=A(p,s)e ((p)IyI (2.9)

where S(s,p)= p2+~ P (s+ivp) 2] ( / 2 ) must be chosen so
L (s+ivp)

that Re P0.

In a similar manner, the Fourier and Laplace transforms

may be applied to the constitutive equation (2.5) to produce
T a

02 (p,y,s)= (s+ivp)yw(p,y,S). (2.10)

If one defines f + (p) and f(p) by f+(p)={eipXf(x) dx and

f-(p)=e PXf(x) dx, then the boundary condition (2.4)

transforms to
-(p,0,S)=(s+ivp)-w(p,0,s) (2.11)

a.. (p,O,s)+021

=-p(S,p)j(s+ivp)w(p,0,s).

From (2.4) it can be seen that o,;(p,0,s)=f(p,s) and

w(p,0,s)=w (p,0,s). It is assumed a priori (and is easily

1 7- +

verified a posteriori) that w-(p,0,s) and a2,(p,0,s) have

=_ =+
analytic extensions w (z,0,s) and o2j(z,0,s) for Im(z)<0 and

Im(z)>O, respectively, which vanish as Izlt-*. Thus the

transformed boundary condition (2.11) can be recast as the

Riemann-Hilbert problem: find F +(z) analytic for Im(z)>0

and F-(z) analytic for Im(z)<0 such that

lim F+ (z)- lim F-(z)=O and on Im(z)=0,
Im(z)-*+- Im(z)--
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F+(p)=T(p)F-(p)-f(p,s) for ::(---) (2.12)

where F+ (z)=a*,(zOs), F-(z)=w(z,.0,s), and

T(p)-- (s+ivp) [p2 + P (s~ivp) 2] (1/2) .

(s+ivp)

It is well known that the solution of (2.12) is

Fz ( I -f(r) dr
(Z)=X (Z)- + r-z (2.13)

where X (z) solves the homogeneous Riemann-Hilbert problem

X+(p)=T(p)X-(p) for (x (2.14)

To solve (2.14), it is convenient to factor T(p) into

the product

T(p)=Gj(p)G2 (p)G, (p) (2.15)

in which G,(p)=-p(s+ivp), G,(p)=(p-.I--) , and

Glp)= P pv2 X(z) may now be_ --- ) 2 (s+ivp)

constructed as the product X(z)=Xl (z)X2 (z)X (z) with

each X I(z) satisfying the Riemann-Hilbert problem

X i+ (pl=Gt(plx t (P).

What will ultimately be required Is to solve the

homogeneous Riemann-Hilbert problem (2.14) for each fixed a

on a Bromwich path with Re(s)>O. This will be accomplished

by first assuming a real and positive and then invoking an

analytic continuation argument. Additionally, for the

subsequent analysis the shear modulus will be assumed to be

positive, continuously differentiable, non-increasing,
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convex and such that p(-)-Ilm p(t)>O. Convexity is
t0

sufficient but certainly not necessary to insure the

validity of the following calculations and though

theoretically overly restrictive, it holds for most of the

customary models such as a standard linear solid or a

power-law material. Moreover, it is worth noting that no

explicit time decay rate for the shear modulus needs to be

specified for the results to be valid. From the fact that

p(t)=O for t<O, it easily follows that [p(s+ivz)]-1 is

analytic for Im(z)<O. Therefore one may choose

X,+ (z)=1 and X1 -(z)=-[(s+1vp)] 1. (2.16)

Since the product G,(p)G,(p)=p(s,p), the branches of G,(p)

3 and G,(p) must be chosen so that their product satisfies the

requirement that Re p(s,p)}O. This condition can be met by

choosing the branch of z(1/ 2 ) with branch cut along the

negative real axis for both G,(p) and G,(p). (See

figure 2.1.) Therefore G2 (p) can be expressed asis

G2 (p)=sgn(p)(p---) and X. (z) may be chosen to be

X2 +(z)-+ (z) and X2 -(z)=-(z)(p--) -1  (2.17)v

In which w+(z)z 1/ 2 ) with branch cut along the negative

imaginary axis and w-(z)z (1/2) with branch cut along the

positive imaginary axis. Finally, one may construct X. (z)

by

1 log(G(r.))X, (z)-exp(r (z)) where r (z= dr. (2.18)
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To find a closed form expression for X, (z), it is

necessary to determine the mapping properties of G,(z) for z

in the half-plane Im(z)SO. If one first considers

j(s+ivz)=p(s-q+ivp) on the horizontal lines z=p+iq, qSO,

e(-,), then it follows easily from the stated assumptions

on y(t) that

(I) (O)=M(-)< (s-q)See _M(s-q+tvp) M(O)=M(s-q±i-);

(ii) Im p(s-q+ivp)=-Im p(s-q-ivp);

(iII) arg (s- iv~>0 p>O.
>0 p><O

(iv) lim p(s-q+ivp)=M(O) with p(s-q) converging

monotonically to p(0).

I Therefore p(s+ivz) maps these lines to the curves shown in

1 fig 2.2a.

The linear fractional transformation S(Z)-zi(s/v) maps

the lines z=p+iq, qSO, pe( -,-) to the circles shown in

fig 2.2b and S(p+iq) exhibits the following properties:

I (v) O=S(0)5S(O+iq)SRe S(p+iq)iS(±-+iq)=l;

(vi) Im S(p+iq)=-Im S(-p+iq);{>0 p>0

(vii) arg S(p+iq) >0 p<O

J (viii) lim S(p+q)-i with S(iq) converging

monotonically to 1.

If the elastic shear wave speeds corresponding to

2
infinite and zero time are defined by c, 2u(4e)/p and

c 2 p(O)/p then from (i)-(vii), it follows that [G(z)]2 has
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the following properties:

(ix) Im G32 (p+iq)f-Im G2 (-p+iq);2 {>0 p>O

(x) arg G2 (p+iq) 1<0 P<O

(xi) lim G2 (p+iq)=1-(v/c)2

(Xii) -(v/c,) 2=G, 2(O)G2 (iq)SG2 (-i-)=I-(v/c) 2 where

G, 2(iq) is monotonically increasing to l-(v/c)
2

as q-#--.
2

Thus it can be seen that G, (z) maps the horizontal lines

z=p+lq, q O, pe(-,-) to the curves shown in fig 2.2c.
2

Furthermore, it can be seen from (xii) that G,(z) has a

unique root z*=iq* in the half-plane Im(z) O for any

positive real value of s.

If the branch cut for the square root defining G9(z) is

chosen along the negative real axis then G,(z) is analytic

for Im(z)<O except for the branch cut on a segment of the

negative imaginary axis across which it has a jump

discontinuity given by Gs(±O+iq)=±i (s/v-q for q*<q o.

It follows that log G,(z) is analytic for Im(z)<O away from

this line segment and has the jump discontinuity

log(G,(+O+iq))-log(G(-O+iq))-i across z=iq, q*<qjO. One

can then evaluate r (z).1 log(G ,(r)) d as in
zw -4._ T--z s I

Walton(1982) and conclude that
r ±(z)-(2/2)[Ilog(q~t-z)-log(-z)+Iog(G*(z))

+ 0 for Im(z)>O
{-log(G,(z)) for Im(z)<O
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Therefore (2.18) reduces to

XI+(z)=W+(z-iq,) [3, (-) ] (1/2)/W + (z) (2.19)
X,-(z)=iw-(z-iq*)[G,(-)] I/2)/w-(z)G.(z).

From equations (2.16)-(2.19) it then follows that

- + (z)=iw+ (z-iq.)[G,(-)] (1/2 ) (2.20)

P~X-(z) =-iw-(z-iq,) [G,(-) ] (/2) /[ (s+ivz) (z-t(s/v))G, (z) ].

Finally, for a specific load a (x)=f(x) one can

determine F (z)=o 2!(z,O,s), F (z)=w (z,O,s) from equations

(2.13) and (2.20). The Laplace transform of the stress

intensity factor (SIF) K(s) can now be calculated as In

Walton(1982). In particular, it is straight forward to show

that

XKs)x(-1/2) as x-#O +  (2.21)

(12e(-1/4)n
where f(r) dr.,2w - X+ (r )

Again, as in Walton(1982), (2.21) may be simplified to

(s) -1 f(x) - 1 )e1-xq * dx. (2.22)

in which it should be emphasized that q. is a function of s

determined implicitly by Gs(iq,)-O.
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3. Calculation of the Energy Release Rate.

The Energy Release Rate (ERR) will now be calculated

based upon the assumption that a Barenblatt type failure

zone exists at the crack-tip. Specifically, it is assumed

that two loads are acting on the crack-faces: the applied

(external) tractions denoted o (x) and the cohesive

(failure) stresses Of(x) acting in a failure zone of length

af immediately behind the crack-tip. The only assumptions

about a (x) are that a is small relative to some length

scale a associated with oe(x) and that K e+KfO where Ke and

K are the SIF's corresponding to a and of, respectively.

Hence the effect of the failure zone Is to cancel the

singular stresses ahead of the crack-tip and thereby produce

a cusp shaped crack profile behind the tip.

The ERR, G(t) (defined to be the energy flux into the

crack tip per unit crack advance) is given by

GMSt) vt a-flx, vtlu,(x,-vt,0t~dx,

which in the moving coordinates becomes

I 0(t)-! 0 r) -v'].,o,,d. (3.1)SVJ-a f Wr [ -xJ

1 It is Impractical to calculate (3.1) diectly since the

expression [ -v a]w(x,O,t) has a very complicated

dependence on oe (x) and of(x) through the inverse Laplace

I
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transform of (2.13) and (2.20). A computationally

convenient expression will be derived for the Laplace

transform of G(t), G(s), for the special loadings ae and af

used In Walton(1987a). Specifically, it is assumed that

oe(x)=Leexp(x/a e)H(-x) and af(x)=-Lfexp(x/af)H(-x) (3.2)

where af/ae<<l. For a f/ae small enough, the fact that of(x)

does not have support in some small, compact interval behind

the crack-tip will have a negligible effect on the results.

The assumptions (3.2) clearly incorporate the salient

features of the Barenblatt model, namely an applied load a e

paired with a cohesive stress of, each with an associated

length scale ae and af respectively, such that af cancels

I the singular stress produced by oe and af/ae<<l. It should

be noted that in this case (3.1) should be replaced by

IG(t)-f o f(x)[3twx

As shown in Walton (1987a), it is straight forward to extend

the analysis to treat more general loads in the form

o-(x)=L etx/adh(t) where h(t) is any signed measure for

which the Integral makes sense. However, for the sake of

brevity that development is not included here.

I If one applies Parseval's formula and then takes the

Laplace transform of the resulting expression, the Laplace

transform of the ERR is found to be given by

I
1
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I

v-

where af (p) denotes the inverse Fourier transform of af(x).

For the particular choice of af(x) given in (3.2),

v Lf v
Paf(P) 21(p+(/a-f) . It is easily seen that af(p) has a

V

meromorphic extension of(z) with a simple pole at z=-i/af.

Furthermore, since w (z,0,s)=F (z) is analytic for Im(z)<0,

(3.4) can be evaluated by residues and whence it follows

that

(s)-Lf (s+(v/af)lF-(-t/a (3.5)

It remains to evaluate F (-i/af). To this end, one begins

gby first noting that (2.11) can be rewritten as

F (p)=o(p)/T(p) (3.6)

where a(p)-(p)+ + (p). (3.7)

From the Barenblatt model o (x)=ae(x)+Of(x) and

consequently
T - - -

a-(p)-G ~p)+ cp). (3.8)

Also a (p) in (3.7) can be determined by application of the

Plemelj formula to (2.13) thereby obtaining

a (p)-F)., I., + r f"- (r) . 3.9)

This can be rewritten using

(P)mo ( P) (3.10)
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++
wherein Oe(p) and of(p) are given by

1 0 - d (3.11)

f X+ (r) -
L

From (3.2) it can be seen that Oe(p)=Is(p(i/ae)) and

therefore o (z) is meromorphic with pole z=i/ae. Since

X +(z) is analytic for Im(z)>O, (3.11) can be calculated by

residues with the result

T+ =-o +(P) (3.12)
a e(P)= a (p) X+ (i/a e)]

~Similarly,I-:+
+ - + X(p)

(p)=-o (p)i + ~ (3.12)

X (i/af)

3 which combined with (3.10) and (3.12) yields
: +p e Lf

-() .(P LL(3.14)°(P -rs [(p (i/a e))X +(i/a e) (p(i/a f))X+(i/a f)J

Equation (3.14) can now be simplified by the Barenblatt

hypothesis K e+K =O. For the special loadings given by

(3.2). equation (2.21) yields

K(s)=[Gs(.)](1/2) (-1/4)T Ce and
sX+ (i/ae )

f(s)-[GD()] (1/2)e (_/4)i I L f which under the

i sX+(i/af)t

Barenblatt hypothesis results in the identity

+ f (3.15)X+(i/a e) X+(I/a f)

Equations (3.14), (3.15), (3.6) and the observation

I
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that T(p)=X +(p)/X-(p) then yield that

-(-i/a)= e-afLe (ae-a ) X (-i/af) (3.16)F--/f) -2f's '(ae+af 7X+(/e

efX (i/ase

One may now substitute (3.15) and (3.16) into (3.5) thereby

obtaining

f(s)=e f (s(v/af) ) f, (3.17)vs f (ae +af )  [X+(I/a e)]2

which when combined with the result (2.20) derived

previously for X(z) produces the desired expression for the

Laplace transform of the ERR

Le ae(ae-af)
Gls)7S (aeTa f)

ll-(afq)2 1(1/2) 1 j PV2 -(1/2)[1-a e q,] p(s+v/af (1+saf/v)2 (s+v/a3f)

In order to present the results in a nondimensional

form, it is necessary to introduce certain parameters.

First, a nondimensional shear modulus is defined by

p(t)=p1m(t/r) where pN=lim p(t) and thus lim m(t)=l. Also,
t-4- t-4-

the nondimensional parameters i, &, a, and p are defined by
,=v/c, , &=a f /a e 0=c*r/a.. and p=-aeq , where O<7<c/c,, 6<<1,

a>O, and A>O.

The Laplace transform of the ERR can now be rewritten

in nondimensional form as
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e 2 (a e2 ()1/2

(Ts//f) 2 2 (s /) (3.19)

It is the study of this basic expression for G(s) found in

(3.19) that leads to the special cases and asymptotic

approximations found in the next section.
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4. Short-time and Long-time Asymptotic Solutions.

Asymptotic expansions for the ERR, G(t), as t-.O and as

t-o- can now be constructed from expression (3.19) for the

Laplace transform of the ERR. For the short time

approximation, It is necessary to determine the asymptotic

behavior of G(s) as s-#-. To this end, it is required to

study the behavior of r(rs+a7f/) and p=-aeq , as s-+-. From

the definition of the Carson transform ri(s), it is easily

seen that

;(c)=m-"(()= [c]2 (4.1)

2

Furthermore, since iq, is the unique root of G, (z)=O in the

lower half-plane Im(z)<O, 6=A(s,i) satisfies the equation

r(rs+a7O)=7 2 (1+lrs/a7') )2. (4.2)

In the appendix, it is shown from (4.2) that

Ts
16aL[ (c/c,)-71] + o(s) as s -. (4.3)

Therefore if G(s) is written as an asymptotic series in

powers of I., It is found that as s-o

L2
- )) e 1 1 ( 1L) s2+ o( ) (4.4)

G~s~= -c T--- c [ 1 [m E (c /c*)-I]4-TUO) 1-2 +O

Hence, if one assumes that G(t) has a Maclaurin expansion in

a neighborhood of t-O then from (4.4) and standard

asymptotic results for the Laplace transform,

Gi-2L/ ae (1- as t-O. (4.5)
G~~L2 p OD T1+&.) ~ a(/*-]~4 t +(
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At this point, it Is worth noting that by allowing j..O

in (3.19), one obtains the ERR for the singular stress

field, i.e. the energy flux into the crack-tip per unit

crack advance in the absence of a failure zone. (If one

specializes further to steady-state conditions, one obtains

Atkinson's expression for the ERR based on a local work

argument at the crack-tip.) One then finds that in this

case

L 2a e 2 -(1/2)
()_e e 1 1m Q j2M, 2--A - 12) m o)I

= [1-(v/c) 2 1 1 2 )[sK(s)]2 where K(s) is the Laplace

transform of the SIF. This can be inverted and produces

4 G(t)=.1[l-(v/c) 2 l(-1/ 2 )[K(t)*K(t)] (4.6)

since K(O)=K(O+)=O. Therefore with no Barenblatt zone

L2

G(t) eC 2 (-1/2) [l ] +o(t)J as t-O (4.7)

where r=1 a /C.

To determine long-time asymptotic solutions as t-#-, it

is necessary to first find lim G(t)=lim sG(s). The
tt-4 -O

expression i(s+av/e) has the limit r(a7/e) as s-*O and 0, as

shown in the appendix, has different asymptotic limits as

s-oO depending on whether (i) O<v<c*, (ii) v=c,, or

(iii) c*<v<c, namely
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-a- + o(s) for O<v<c (4.8)
a. (-112) 12

_ C~ 1 1/2I
rm (r) dr s + o(s 1 for v=c ,

P='O + 0(i) for c.<v<c,

where p. is defined implicitly through the equation

L2[ _I=f e 7/ 0r m (r) dr. (4.9)

To avoid seperate cases in displaying subsequent formulas it

is convenient to define po=0 for O<v~c.

Again, from standard asymptotic arguments for the

Laplace transform
L2a i_ o2 (1/2) 2 -15

lim L)e ae ((1 1(/ (4.10)

which is precisely the steady-state solution found in

Walton(1987a).

g Several comments on these asymptotic results are in

order. First, it should be observed that whether or not the

model assumes a failure zone dramatically affects both

qualitatively and quantitatively the behavior of the ERR as

a function of time, crack speed, and material properties.

For example, from (3.19) it is easily shown that for any t,

L 2a
if e>0, lim G(t)=w whereas If e=0, lim G(t,_ ee Det), where

|f# 7-0 1 2y

sD(s)= 1 and from (4.2) pls,O) -[rs)](-1/2)
1+p8(s,U) a~,)-~mr)

However, in the steady-state limit (4.10), G approaches a

finite limit as the crack speed vanishes, both with and

mA
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without a failure zone. Specifically, it is easily seen

that for the steady-state limit

lim G()- e 1 for 6>0 (4.11)

Le 2a e I
2 ; for 6=0.

Thus G becomes infinite as 1-#0 except for e=O (no failure

zone) or under steady-state conditions.

The reason for this behavior is found through

consideration of the crack face particle velocity

u3(xfOt)_ (x,O,t)-v7a(x,0,t). A consequence of the

assumption that there is an initial jump discontinuity inI 8w

the applied crack face tractions is that a-(x,O,t) does not

vanish as v-*O. Thus, from (3.3) it follows that lim G(t)=-.I v-#O

In contrast, when &=0, one sees from (4.6) that G is merely

a product of K(t)*Kl(t), which depends only on the SIF and a

simple function of crack speed and glassy material

properties that is Independent of the crack face particle

velocity and that remains bounded as v-+0. Moreover, in

0 - 8w
steady-state, G is given by G- -f aff (x)!-(x,O) dx and thus

remains bounded as v-O.

Other differences between the a-0 and &>0 cases are

evident in the short time behavior of G(t). In particular,

from (4.5) it is easily seen that when 6>0,
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2
L a c,Le 2ae 1-# -C

im G(t)- - >0 (4.12)t-#O 40
whereas, for &=0, it follows from (4.7) that

lim G(t)=O.

t-#O

Additionally from (4.5), when &>0, G'(0) is given by

2Le ae (1-t) MIO (4 13

From the fact that m'(O)<O and using the identities

m(O)P'(O) and a=c~r/a , it follows that the sign of G'(0)

depends upon the crack speed and material properties through

the relation

G'(0)>O [G'(0)<O] If and only if (4.14)

21()I(a /c)>Cl-(v/c)] r 1(0) "-(v/c)]

In particular for fast enough crack speeds, G'(0) will be

positive, i.e. G(t) will initially increase with time.

However, for any given crack speed if the combination

IP'(°)l(ae/c) is small enough, then G(t) will initiall

decrease with time.

Attention will now be directed toward describing the

manner in which G(t) converges to the steady state limit as

t approaches infinity. It Is useful for comparison purposes

to consider the question first for elastic material. An

expression for sG(s) for elastic material emerges by letting

rT.40, / =p0=p and m(s)al in (3.19). Recalling the identity

@=c~r/a e and noting that c=c*, one sees easily that
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2
sG(s)- s)(4.15)2 ;j - l-+ ) ( lT + -P - ( + r ) 21

where 1 -a e/c. Moreover, from (3.20) it is straight forward

to deduce that for elastic material

o-sr, /(1-7). (4.16)

Substitution of (4.16) Into (4.15) and routine algebraic

manipulation yields

s es2) a e (1-t) 2 (-1/2)

Ij7 Tf~i)
(1+".,-) (1/2) (1+5TLf./7) (1 +. s,- 1+l4LJ- /) (4.17)

It Is instructive to consider first the elastic limit

with no failure zone. Letting 6-#0 in (4.17), one then has
2

Le ae (i2)(-1/2) 1+_ )-1_
sG(sl=--- (1-7) (1+ from which it follows that

e2e

G(t)= L e a e (21- 2)(1-/2)l-e -at) where a,=(1-Y)/r,=(c-v)/a

Thus, G(t) converges to its steady state limit with an

exponential decay rate that decreases monotonically with

increasing crack speed up to the shear wave speed.

A somewhat more complicated expression for G(t) results

for e>O. Calculating G(t) by Laplace inversion of (4.17)

may be conveniently done by defining a,=(1-i)/r, (as above),

a,,=/(rfe), a,=a,/e and a4 =(1+Y)/(re.), and then considering

the Laplace inversion of

1 (1+s/a2 ) (1/2) (-1/2)H(s) s /a) (1+s/a) ) (1+s/a4) . It is

convenient to factor H(s) as the product H(s)=H,(s)H,(s)

with H,(s)- (1+s /a2 )(1+s/a 2 ) ands(l+s/a,)
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H,(s)= a,.a4 [[s+(aa+a4 )/2] 2_ [ ( a - a )/2]2](-I/2) Then H(s)

can be inverted to h(t)=h,*h 2 where h,(t)=b18(t)+1+bea
jt

2 12 t _r2

and h,(t)- 21 - ) 1 / 2  e-(1/ ) (t/rT) I,( -t ) where b,- -1--

b,-+('/7)( 1 (-)), 8(t) is the Dirac point measure, and

I,(t) is the modified Bessel function of the first kind of
( t)2r

order zero defined by Io(t)= - 2 Therefore the ERR

r=O

may be written as
2L a

G(t)-e e (1-o) 2 (-1/2) (4.18)2 _T I-&- ).8

[b1 h 2 (t) + f h,(t) dt + b 2 e-alt*h 2 (t)]

From the fact that O<a,<a,<a4 , an easy argument shows that

dh(t) decays like e as t-#oo. Thus G(t) converges to its

steady-state limit with the same exponential rate as in the

#=0 case.

It is easily seen that for a viscoelastic material the

situation Is considerably more complicated due to the

combined influence of material inertia and viscoelastic

stress relaxation upon convergence to steady state. A

general property of the Laplace transform Y(s) of a function

f(t) Is that f(t) decays exponentially in time, say

f(t)~e - a t with a>0, if and only If F(s) Is analytic in the

halfplane Re(s)>-a. The expression (3.19) for sG(s) is

valid for s real. Its analytic extension for complex s is

given by
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2
e ae (1-L) -1

-1-(&A) 2 1(/2) (4.19)

Determining the largest value of a, amax' for which

sG(s) is analytic in the halfplane Re(s)>-a Is a difficult

task that clearly depends upon the particular details of the

transform m(rs+a7/e). From the previously stated properties

assumed for m(t) it follows that [i(rs+ai/c)]-1 is analytic

for Re(s)>-a- -. If m(t) is a powerlaw in t, then ;(Ts+a7e/)

has s=--- as a branch point and a can be no larger than
Te- max

that. As a second example, for a standard linear solid with

m(t)=l+qe- , (r(s+a1/$)] - I is analytic for

Re(s)>-[(7+1)- +ai/f ]/r.

The heart of the matter lies in determining the

analyticity properties of A(s,i), which is defined

implicitly through equation (4.2). Whether or not p(s,,7) is

analytic in some halfplane Re(s)>-a, a>O, depends upon the

particular way m(t) decays to its equilibrium value as t-*-.

This necessitates a case by case analysis for different

forms of m(t). We content ourselves here with illustrating

the differences that exist between materials with

exponentially decaying modulus, such as a standard linear

solid, and those for which m(t) decays as a power of t to

Its equilibrium value, such as a simple powerlaw material

with m(t)-1+q(1+t) -n , n>0.
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An important observation to be made for powerlaw

material is that G(t) cannot have exponential decay to its

steady-state limit when v<1, i.e. v<c,. The reason for this

is that O(s,v) is not analytic at s=O as can be seen from

the following argument. It was remarked earlier that

p(O,i)=O whenever Y<i, in particular lim p(s,i)/s-a_

Moreover, for powerlaw material i(s) has s=O as a branch

point. If A(s,v) were analytic at s=O then the right hand

side of equation (4.2) would also be analytic there.

However, the left hand side of (4.2) has s=O a-. a branch

point. This contradiction proves the claim.

On the other hand, for i<7<m(O) (1/ 2 ) (i.e. c*<v<c),

since p(O,)>O, equation (4.2) defines p(s,Y) as an analytic

function in a neighborhood of s=O. In particular, p(s,7) is

analytic in a halfplane Re(s)>-a, a>O. However, finding the

largest such a is difficult. For elastic material, the rate

of exponential convergence of G(t) to its steady-state limit

corresponds to the negative real value of s for which

p(s, )=-1. For viscoelastic materials, again a case by case

analysis will be required to determine precisely where the

singularity of eG(s) with largest real part will occur.

The remaining case v=1 (i.e. v-c,) is easily handled.

Indeed, for a general material, not just powerlaw or a

standard linear solid, equation (4.2) admits no solutions

for s<0. Thus A(s,l) is not analytic in any halfplane
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Re(s)>-a, a>O and G(t) cannot converge exponentially to its

steady-state limit. Furthermore, It Is not difficult to see

from equation (4.2) that the left endpoint of the largest

s-Interval containing zero for which an admissible solution

rp(s,v) exists converges to zero as i approaches 1 from

above.

These observations made for powerlaw material whenever

1V<U(O) ( 1 / 2 ) (c,<v<c) are equally valid for a standard

linear solid. A departure in behavior occurs for 0<i<1. If
ml)=~q - t the m -1+ ( 1+ 17)s

then rs then4;(s) +s and (4.2) can be rewritten

as

l+(I+,7)z= 2[ z ] 2  
( .02~ (4.20)

where z=rs+7A/(s,i). When s>0, a root z must be sought that

is greater than rs, whereas z<rs is required when s<0 is

suitably near zero. An examination of the graphs of the

functions on either side of equation (4.20) quickly reveals

that admissible solutions exist for any 9>0 and s<O suitably

near zero. Moreover, no solution exists for 7=1 and the

left hand endpoint of the largest s interval containing zero

on which a solution exists tends to zero as 9-#0-. One

concludes from this that for a standard l.inear solid, G(t)

converges exponentially to its steady-state limit for 0<i<1

and l<i<m(O) ( 1 /2) but not for i-1. Moreover, the rate of

exponential convergence, I.e. amax' tends to zero as 1-41±.
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It is also easy to see from (4.2) that a max must vanish as

?*( (1/2)
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5. Conclusions

The principle contributions of this paper to the study

of transient mode III crack propagation are the solutions

for the displacement and stresses for general loadings and

general shear moduli and the inclusion of a failure zone

Into the model and the calculation of the energy flux, G(t),

into the failure zone. It was then observed that

significant qualitative and quantitative differences exist

in the behavior of G(t) as a function of time, crack speed,

and material properties between a model Incorporating a

failure zone and one which does not.

The question of the rate of convergence of G(t) to its

steady-state limit as t-.o- was also investigated. It was

observed that this rate of convergence depends in a

complicated way upon the rate of stress relaxation and crack

speed. In particular, for a standard linear solid in which

stresses relax exponentially fast, G(t) converges

exponentially fast for all crack speeds except the

equilibrium shear wave speed. Thus for crack speeds near

the equilibrium shear wave speed, It is expected that

steady-state conditions would set in more slowly than for

crack speeds above or below It. Also the exponential rate

of convergence is lost at the glassy shear wave speed. In

contrast, for power law material, an exponential rate of
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convergence of G(t) does not occur for any crack speeds less

Ithan or equal to the equilibrium shear wave speed whereas
for speeds between the equilibrium and glassy shear wave

speeds G(t) does converge to steady state at an exponential

rate.

I
I

I
1
1
I
I
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Appendix

IThe behavior of p as s-o- is determined by equation

(4.2). If one lets h=p/s>o then (4.2) becomes

1(s[r+aih])=i 2 (+(,2/ah) . (A.1)

The left-hand side m(s[r+ach])=m()+fe-(T+ah)sr m'(r) dr
0

has the limit m(O)= [E_2 >,2 as s-.oe. Therefore (A.1) will be

satisfied only if h=h +o(1) where h >0. As s-o-, (A.1)

I becomes

[_] 2 = 2 (1+(T/a 'h ))2  (A.2)

It is easily seen that h -) and thus

(l ) + o(s) as s--.

To find G(s) in terms of powers of s-1  one needs to

g determine the expansions of each of the individual factors.

First, one needs to find

; r(rs+a7/e)=m()+je-(rs+ay/6)rm.(r) dr=m(O)+m,s - +o(s - ).

The s- 1 term is found by taking the limit as s-*- of

s e- (  a / r (r) dr. After integrating by parts, one

0~ 1 ,
finds that m,0)m (0). Therefore

(-1 -1;(r~c7/&=mO)+ m(O)s +o(s- ) and

(rn(rs+a7/&) ]'- 1  1 - ]+ O(S ). (A.3)I Th xrs i l-( p)2I( /2)

The expression can be expanded as

A
I
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I - a[c/c*-]J--] + o( ) as s-#-. (A.4)
1(/)2 -(112)
The final term 2

T(Vl~a/6) 2 m (Ts+a7/6 )

Sm'(o) 
-I I -(1/2)

(i/2)r ' (0)U 11 -1
=m(O) ( 1 / 2 ) [1 + m(0) 1 +o(s ). (A.5)

If (A.3)-(A.5) are substituted into (3.19), one obtains

(4.4).

To determine the behavior of P as s-+O, one must again

consider equation (4.2). Note that the left-hand side of

(4.2)

mlrs+ciip)=m(O)+ e-m ' (r) dr l. (A.6)

For O<v<c., the limit as s-#0 of the right-hand side of
72 2

(4.2), 12(1+rs/a/3) , will satisfy (A.6) only if p=p,s+o(s)1
as s-#O. Therefore as s-#O, (4.2) becomes

1=- 2 1 +r/ap ) 2 (A.7)
T

The solution of (A.7) for p, is easily seen to be p,= _ "

For c*<v<c, the right-hand side of (4.2) satisfies

Y2 2+rs/a ) 2 I . (A.8)

If 0-#0 as s-O then it can be seen from (A.6) that the limit

of m(rs+a7vp)=l as s-#O which contradicts (A.8). Thus

A=Po+o(1), ,>0 as s-40 where P. satisfies

7 2 (c,) 2=.*e-a7 orm'(r) dr.

0

For v=c*, it can be shown that to satisfy (4.2) that

pA-O and s/p-.O as s-0. Therefore consider p=p,s1 7+ 0 (s),



39

0<<1, as s-#O. If one substitutes this into (4.2) and

simplifies the equation, one obtains

-a_'vPs a*rm'(r) dr + o(st ) a -q + o(s ) as s-+O (A.9)

assuming that frm'(r) dr exists. If this integral does not

exist then one must do the asymptotics for the particular

shear modulus needed. Since the coefficient of each side is

non-zero, t=1/2 and p47- cJrm' (r) dr In summary,

/a- + o(s) for O<v<c,,
_./""[](-1/2) 1/2 1/2

4 rm'(r) drj s + o(s ) for v=c,, and

p=po+o(l) for c*<v<c.
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